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A METHOD OF SOLVING PROBLEMS OF THE LINEAR THEORY OF ELASTICITY’
A.G. FOKIN

A method is developed for solving linear boundary value problems, based
on their interpretation in the spirit of functional analysis. In the
special case of the theory of elasticity, the stress and strain fields
are considered as elements of a real Hilbert space of symmetric tensors
of the second rank. On the basis of the second derivative of Green's
tensor of the equilibrium equations, projection operators P and § are
constructed that satisfy the equation P4 @ = /. The solution of the mixed
boundary value problem is represented in the form of Neumann series, whose
sufficient conditions for convergence are written in the form of operator
inequalities which lend themselves to a simple interpretation in the
language of energy functionals. By strengthening these conditions we can
express them in terms of the closeness of the coefficients of the problem
A and A, . A representation of the potential energy is given in the
form of a certain functional which can always be expanded in series.

The limits within which the exact value of the potential energy lies is
obtained.

The purpose of this paper is to develop a method for solving linear
boundary value problem based on the formalism of Green's tensors on the
one hand, and on the interpretation of these problems in the spirit of
functional analysis, on the other. Consideration of the stress field ¢
and strain field ¢ as elements of a real Hilbert space H of symmetric
tensors of the second rank and the introduction of the operators P and Q,
constructed on the basis of Green's tensor G and acting in the space H,
enable a transfer to be made from the equilibrium eguation to a functional
equation of the form (1.13). The iteration method often utilized to
solve such equations results in a solution in the form of the Neumann
series (l.15) whose convergence conditions are not always evident.

It is assumed that the elastic properties of the medium under invest-
igation are described by a symmetric fourth-rank tensor A= A(r). (Here
and henceforth, the tensor subscripts are omitted, for simplicity, almost
everywhere, and the vector quantities are denoted by heavy type. In the
product A4xB; of the tensor Ay of rank k and the tensor B; of rank | the
summation is over all subscripts of the tensor B; if I<k and over the n
inner subscripts of the tensors Avand B; if k= 1= 2p).

A medium for which the solution of the initial problem is known is
used as the auxiliary medium (the comparison medium). Its elastic propert-
ies are described by the tensor A,. Without limiting the generality, we
consider A and A, symmetric operators (see Sect.2). This enables the method
to be extended to viscoelastic media and a medium with a microstructure.
Important relations are obtained in Sect.2 for the operators P and Q0 and
their associated pP,Q. It is shown that these belong to the class of
projections. This circumstance exerts a substantial influence on the form
of the convergence conditions for series (2.14). By rounding off the
sufficient conditions for (3.4) and (3.5) to converge, we obtain conditions
(3.7) and (3.8) (or (3.11)), whichwhen Ac¢pc#I turn out to be independent
and can be satisfied simultaneously.

A representation of the potential energy U in the form of functionals
computed using the auxiliary fields g, and e, referred to the comparison
medium, is given in Sect.4. It is shown in Sect.5 that the energy u' is
representable in the form of the series (5.1) or (5.2) whose sign-definite-
ness depends on the properties of the functionals iy or mg , respectively.
In any case the limits within which the exact value of u' lies can be
computed.
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1. Consider the equilibrium equation for an arbitrary linear elastic medium with the
boundary conditions

Lu= —f,L =dividef= VAV, r=V
=y, TES; t=1y, r& I,
t=on, 0=, S, JS,;=3S

Here u is the displacement vector, { 1s the vector of the volume density of the external
forces, and n is the unit vector of the external normal to the surface S bounding the volume
V of this medium. The strain tensor ¢ is related to the displacement vector by the relation-
ship e= defu, as a result of which it satisfies the compatibility equation /1/

[

[

Ink e = 0, Inkyny = €ipxe;qVpVq (1.3)

where summation is over the subscripts that appear twice.

In addition to {1.1)=(1.3), we will assume that there are analogous equations for the
comparison medium to which the transition is made by replacing A by A,. The fields correspond-
ing to this medium are denoted by the additional subscript c.

We will now find the relation between the fields g and g, - To this end we introduce the
difference field u; =u — y,=1u’', to which the stresses o, = A, ¢ correspond in the medium
with the elastic properties ., where g = defw, =¢'. Evidently o, ¢ = ¢ — ¢, Using the
polarization stress tensor T /l/, we can write

o =g, +t=»Ae -+ (1.4)
Subtracting the equation and boundary conditions for the comparison medium, respectively,

from (1.1} and the boundary conditions (1.2), and taking into account that the external effects
are identical in both cases, we obtain an equation with the boundary conditions

Loy=—1f, f=Vr, reV¥V (1.5)
ﬂ1~"=0, rESx; fy=— 11, PE‘Sg

We will find the solution of problem (1.5) by using Green's tensor & (r,r;) that satisfies
the equation /2, 3/ and homogeneous boundary conditions

LG r)=—8(t—r); r,n &V (1.6)
Glie,n)=0, r=8y; Ti,r)=0, t&Sy nsV
YTELN ) = "’yxi:pklvk th (r, 2y)
We will change to the polarization stresses t in the integrands in the general solution
of problem (1.5), and we will use Gauss's theorem. We obtain

uy' (1) = — § T (1) VA6 (v, 1) AV + Bu/ (1) (1.7

Auy’ (r) =S [Gyi (va, 1) 85" (01) — T3 (v, 1) 4" (r2)]1dS (1), V' == 0'ns
where §! is the nabla operator for the coordinate ;.

The solution (1.7) contains the surface integral Ay (r)} that equals zero within the
domain and is not defined on the boundary § since its integral is zero at all points of the
surface of integration, except the one where it becomes infinite. The limit values of this
integral equal zero. Taking this remark into account, we will later write solution (1.7)
without the term Au; {r).

The strain field

e = V' = — § VGee, 10 (s 02) Trr () BV (1.8)

corresponds to the displacement field (1.7}, where symmetrization is performed over the sub-
scripts in parentheses, and the subscript l; denotes differentiation corresponding to the
operator Vil

Let us rewrite (1.8) in the form

¢ =Q1, Qim(r,t1)=— VGppx (v, 1) (1.9)

Here the integral operator Q and its kernel @ (r,r,) are denoted by the same letter.
Substituting (1.9) into {1.4), we find

g = P, N = —rT (1.10)
where the integral operator P is related to Q by the relationships
— P+ A — @ =it + BePlhei Aepte=1 (L.11)

Formulas (1.9) and (1.10) agree in form with the analogous relationships in /4/, but
they are obtained here in the more general case.
Expressing T in (1.4} in terms of 1 , we obtain

e = po’ + 1 (1.12)
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Here v is a polarization strain tensor playing a part analogous to 1 in (1.4). The equa-
tions , ,
T=Ae,m=por=z—z,p=1
result from (1.4) and (1.12) and are used to reduce (1.9) and (1.10) to the form

e=¢ +Qr=c¢+4 Qh'e, 6o =0,+ Py =0, + Pu'c (1.13)

The relationships obtained are inhomogeneous linear integral equations of the second
kind /3/. 1In the case under consideration the domain of integration v is fixed, in which
connection (1.13) are sometimes called integral egquations of Fredholm type /3/, The solution
of each enables the unknown fields ¢ and € to be expressed in terms of the known ¢, and &,
which is equivalent to the solution of problem (1.1) and (1.2). Therefore, any of the equa-
tions (1.13) is equivalent to the problem {(1.l1l), (1.2). (This fact lends itself to the con-
sideration under which equations (1.13) are mutually independent. In this case, however, it
is necessary to use two comparison media whose elastic properties are described by the tensors
AN =%, and A = p,! , respectively. Obviously, A5 I). The displacement vector u can
be found from (1.7).

On the other hand, relationships (1.13) can be interpreted as functional equations in a
real Hilbert space H of symmetric second-rank tensors. The solution of equations (1.13) is
here reduced to the problem of seeking operators a and b in the form

a=U =X)L, X=QM; b=(I—Y), Y = Py (1.14)

which are representable, under certain conditions, in the form of Neumann series /3, 5/

0o

a= 3 X*, b= Y* (1.15)
=)

k k=0

Before investigating the conditions under which the expansions (1.15) are possible, we
will obtain certain equalities for the operators P and Q.

2. we define the scalar product of two elements & and ¢ of the space H denoted by (g, 0)
by the equality

(e,a)=Sei,-cri,~dv. dv=2" (2.1)

In this paper, symmetric (Hermitian) operators are utilized, i.e., those operators satis-
fying the equation A* = A4, where the superscript plus denotes the conjugate operations which
reduces to transposition, defined by the relationships /3, 5/

(e, Agy) = (A*e,, &) (2.2)

in the case of real fields under consideration.
Taking account of (2.2) and (1.l1), the operator Q introduced in (1.9) can be represented
in the form
Q= —VMV+ (2.3)

where M is an integral operator whose kernel is Green's tensor G.
We will show that the operator () is symmetric. To ‘this end, we operate with the operator
"plus" on both sides of (2.3). This yields

Qr = —(VMV+) = — (V*)*M+V*
Taking into account the reciprocity theorem that has the meaning of a symmetry condition
for the operator M, and also the equation (V*)* =V, we obtain @* = @. Because of (1.11)
the operator P is also symmertic. The symmetry condition is considered satisfied for A and Ay .
We will examine the scalar product (e’, ¢’), which, by virtue of (1.9), (1.10) and (2.2),

equals , .,
(¢’, a') = (Qv, Pn) = (v, Q*Py) = (x, QPy)
On the other hand, the following equation holds

(e’, 0') - -—:,— S u't'ds— S w'divo’dy

in which the surface integral (exactly equal to zero because of the boundary conditions (1.5))
should generally be omitted in connection with the procedure for computing volume integrals
containing the difference fields introduced in obtaining (1.8) from (1.7). The volume in-
tegral on the right side of this equation vanishes because of (1.5) written in the form
Vo’ =0 taking (1.4) into account. Therefore, we finally obtain

(t, QPn) = (v, PQr) =0 (2.4)

Equations (2.4) enable important relationships for the operators P and Q to be derived.
Substituting the operator P from (l1.1l) into (2.4) and expressing M in terms of 1 using (1.10),
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we find

(v, Qv) = —(1, QrQv) = —(@r, A,01) (2.5)
or in operator form
Q+ QrQ =0 (2.6)
Because the integral form (e',A.£’) is positive, (2.5) means that the operator O is nega-
tive definite in the sense of the inequality (v, 1) << 0). Substituting the operator Q from

(1.11) into (2.4), we can write in an analogous manner
(M, Pn) = — (n, Pp.Pn) = —(Py, p.Pn) (2.7
or in operator form
P+ Pu P =0 (2.8)

Because of (o', p,0’) 1is positive (2.7) means that the operator P is negative definite,
i.e. (n, Pp)<O.

Two fields ¢ and ¢ = Ae belonging to the space H but being distinguishable by the
dimensional factor A are in the computations presented above. However, it is more convenient
to be rid of these differences by making both fields identical in the dimensional sense. This
can be achieved by multiplying the fields ¢ and e by the symmetric positive operators p,‘l- and
A ¢ respectively. Because A, is positive and symmetrical the representation Ao = (A ])? is
single~valued /5/.

We will introduce the following notation for the fields and operators:

5= p::/,(’, = )-::/'E; P=— p::/fpp.::/x' O — _ L;/:Q;‘::/u
Equations (1.13) take the form

Fam,— GN N—p.'/’k’ -/. :/x“:/,= I (2.9)
T=—= l'-)' P}L’a II =A /l}ll)wlh ac=€c=klchec
From (l.ll) we cbtain
FL Q=1 (2.10)
and (2.6) and (2.8) become
=D 0*=0 (2.11)

s

Because of (2.10) and (2.11) the positive symmetric operators P and § possess the propert-
ies of projection operators /5/. Therefore, the space H is representable in the form of the
sum H, + H, of two subspaces which are mutual orthogonal complements. The inequalities /5/

0<P<LL0LOLI (2.12)

are valid for the projection operators P and § , where the left values hold when H, or H,
consist of one zero element while the right values hold if H,or H, agree with H.
Finally, we note that the solutions of (2.9) have the form

=08, a=Al'an’; T=085, b=pdbA" (2.13)
where we will have, in the same way as for (l1.14) and (1.15), for the operators & and b
i=(—X =X X, X=—0kF (2.14)
k=0
b= —Y)'=2 7V, ¥V =Py
X=0

It is possible to represent @ and b in the form of series, provided they converge, which
we now investigate.

3. The uniform convergence (in the norm) of the series (2.14) is examined below. We
shall say /5/ that the sequence gg, converges to d in the norm if {j @y — ajj—0 as u— 0.
As is well-known, the concept of a norm is directly related to the scalar product (2.1). By
definition, we have /3, 5/ (A is a certain operator)

(Fl=0 oy, (Af=spLZL  j=r (3.1)
por el Ty |

According to a Banach theorem /6/, the operator (1 — X) has a continuocus inverse operator
@ of the form (2.14) if the norm of the operator X satisfies the inequality || X<k, < 1.
The necessary and sufficient condition for the series @ from (2.14) to converge is /6/ compli-

ance with the inequalities || X"|| < k<1 for a certain n.
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According to the definition (3.1), the condition of the Banach theorem (the convergence
of the first series in (2.14)) can be written in the form '

NEFE = XXH< k> H=k>NfIP,O=fEH (3.2)

where, unlike X, the operator X*X possesses the property of symmetry. Rewriting (3.2) in
operator form and taking account of (2.11), we obtain

MOM <kl < I, (3.3)
Returning to the initial quantities, we hence find
-V K<, 0 k<] (3.4)

Inequality (3.4) is the sufficient condition for the fir'st series in (2.14) to converge,
and therefore, the series a from (1.15) also. By using analogous reasoning, we write the
sufficient condition for the second series in (2.14) and b from (1.15) to converge in the
form of the operator equation

—n'Pp K ke, 0 R < (3.5)
Relying on the property of the operator § of the form @ < /I, we will have from (3.3)
MOV <RI (3.6)

It is seen that condition (3.6) results in the sufficient condition for the first series
in (2.14) and (1.15) to converge in the form

A=k A <A A+ E)A, 0 k< (3.7)

In a similar manner the sufficient condition for the second series in (2.14) and (1.15)
to converge can be written in the form

B —k)pu. < p< U+ ) p, 0 k< 1 (3.8)

It can be shown that the inequalities (3.7) are equivalent to the corresponding inequal-
ities for the potential energies.

For simplicity, we will examine the case of homogeneous boundary conditions and no ex-
ternal forces f . Then the potential energies U (e) =Y, (e, Ae) and U, () = Y (&c, Ackc) Of the in-
vestigated and auxiliary media satisfy the following inequalities because of the theorem on
the minimum of the potential energy

U (e) < U (), Ue (ec) < Ue (€) (3.9)

Combining inequalities (3.9) and (3.7), we can write
A —Fk) U ) S U ()< (4 + k) Uec (ec) (3.10)

Similarly, inequalities (3.8), together with the theorem on the minimum of the additional
energy, also result in inequalities of the form (3.10).

The inequalities (3.7) or (3.10) can be interpreted as constraints imposed on the elastic
properties of the medium under investigation provided that they are given for the auxiliary
medium. Since usually it is A that will be given from the very beginning, it is more conven-
ient to rewrite inequalities (3.7) and (3.8) in the form of constraints imposed on the elastic
properties of the auxiliary medium.

By (3.7) and (3.8), the parameters A, and p. should satisfy the inequalities

A A B B
T ShS<T—=% » TR Sk<T1—j (3.11)

Taking account of the assumed boundedness of )\ and p we can conclude that the right sides
of inequalities (3.11) result in the inequalities (g Ac, &) << C; and (o, po,) << C; which
impose no substantial constraints on the selection of the parameters A, and p,. On the other
hand, the left sides of the inequalities (3.11) determine the domains of values of the para-
meters A, and M, that satisfy the sufficient conditions for convergence.

Analyzing these inequalities, we arrive at the conclusion that under certain conditions,
a domain of values of the parameter i, = p.™? can exist that satisfy both left inequalities
(3.11). In this case both expansions hold even for the fields § and 3§ ((2.13) and (2.14)).
In general, it can just be asserted that one of the parameters i, Or pe » related by the equa-
tion A =17, can always be selected in such a way that the sufficient conditions for one of
the series (2.14) to converge would be satisfied. Finding one of the fields e or ¢ in the
form of a convergent Neumann series enables the other to be calculated using the relations
o= ke or e=uo.

If the parameters j, and p. are not related by the equation igu.=1I, the constraints
(3.11) are mutually independent. In this case, by selecting A.- and p.from (3.11), we will
have a basis for using both series (2.14).

4. Let us consider the elastic strain energy /2/
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W = fwdV = V {w}, 2w = e;;0;; = €0
where the braces denote averaging over the volume V. Keeping in mind the definition of the
scalar product (2.1), we can hence write

2{w) = (e, 0) = €, ) (4.1)
We can express the energy W in terms of the field e, To this end, we will rewrite (4.1)

in the form
(e, 0) = (e, 0) + (e, 0,) (4.2)

by using the equation (&', 6) = (¢, 0,)
Taking into account the equations o=Ae= A'e + Ae = A'e + A&’ + 0,, we obtain from (4.1)
and (4.2)
2 {w) = (e, 0) + (g, A'e) + 2 (e, o) (4.3)

The first term on the right side of (4.3) is the elastic strain energy 2W/V in the
comparison medium, while the latter is determined by external effects (surface and volume).
To eliminate it, we introduce the potential energy /2/

U=W— [utdS, —ufdv (4.4)

Subtracting the potential energy U, from (4.4)
U=sU-—-U=W —f§utdS, — fufdV, 2’ =z — =z,
and passing here from a surface to a volume integral, we obtain
U=W—-V(E, o=W —-V(, o)
Taking account of (4.3), we hence find
U'tV=u' =1y(e, Ae) =Y, @, ~'E) (4.5)

Furthermore, we use the solution of (2.13) for the field & in the form & = (I — X)-'&,
which is valid if and only if the corresponding Neumann series diverges. Substituting it into
(4.5), we obtain

2u' = (2e, [J + Gl '8,), GA' = I (4.6)

In addition to (4.6), a representation of the energy u’in terms of the field 3§, is pos-
sible. Instead of (4.3), we find similarly

2 {w} = (&, 0o) + (0., u'o) + 2 (e, o) (4.7
Transforming the potential energy (4.4) to the form
U= {utdS, — w

and using (4.7), we arrive at the equation

‘

u' = =Y, (0., n'o) = —Y, @, R’ (4.8)

Substituting into (4.8)the solution (2.13) for the field § in the form §= (I — ¥y-15,
which holds in general, we shall have in place of (4.6)

zu,=_(6cv[ﬁ+p]-16c)' ﬁr"l=1 (4.9}
Formulas (4.6) and (4.9) enable us to calculate the energy u’ by two equivalent means.
Comparing (4.6) and (4.9), we note that
—(F+P)=0+7 (4.10)
On the other hand, (4.10) follows from (2.10) and the relationship a4+ ¢ = —J which
can easily be established.

5. Let the conditions for the series @ and b to converge be satisfied. Then taking
account of (2.13) and (2.14), respectively, we obtain from (4.5) and (4.8)

2u'= Z by b= (Z‘, A"eh‘) = (Ecv xlik)v Ek = XkEe (5.1)
0

=— %’""' my, = (0, Wo;) = @, BTy), Ty =T’q, (5.2)

Sy -1
€ =2"% o =p"Ty)
The representation of the potential energy in the form of converging number series (5.1)
and (5.2) enables us to obtain approximate solutions for y’as well as the limits us’ within

which the value of u’' lies.
We will first investigate the fixed-sign property of the series (5.1) and (5.2). The
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symmetry of the operators utilized as well as the properties (2.11) of the projection operators
P and ) enable us to write

OX=2X, X*=—%0Q, PY=Y,V+=~ WP (5.3)
By using (5.3) and the definitions (2.2} and (5.1), it can be shown that
(g M E) = (Fpys Meg) = - = (2, M) (5.4)

— By Cgar) = (B Megyy) = (Foy MEpgia)i a0
Correspondingly, (5.3) and the definition (2.2) and (5.2) yield

(Bps BB = (Opops WGgur) = - = (5 BCppg) (5.5)
— (B 410 Ogar) = (Bp BB )= (5, RS, 000)i PLa0
The functionals Iy and my, defined by (5.1) and (5.2), can also be represented in the fol-
lowing form using (5.4) and (5.5):
12k=@k' i’;t), lik—l = _(Ekv Ek)r mgk=(ap i’sk); Mgy = — (Ek' Ek) (5.6)
It follows from (3.6) that the functionals L., and my.; are negative, while the signs
of the functionals l and my are determined by the value of the parameters i, and p,. Let &,
and p. be such that A =0 and p' <0. In general, A, and . cannot here be related by the
equation Ague=17. We then have from (5.6) Lr=0 and mus0, i.e., series (5.1) and (5.2)
will possess opposite sign-definiteness.
To obtain the boundaries for u' , auxiliary inequalities are needed whose derivation is
based on (5.6) taking the signs into account. Because of the positivity of scalar products
of the form (f,f), the ineqgualities

lype F 2+ U501 <O 1Sty + 64y 8 F0 (5.7)
Mgy T Mgy + Mypyy <O =0y + 0pyy, 0, F0
hold.
Similarly, using the inequalities (f,Af)=0 and (f,p'/) 20, we can write
L + 2gpan + lggea 20, V20 (5.8)
Mgy + 2Mgpyy + Mg 20, p'20

Summing inequalities (5.7) and (5.8) with respect to kbetweenn and o, we obtain

2N L<ly <0, 2 > m,<my, <0, 21 (5.9)
2n—1 gn—1

2’5;3 L= 1,20, W20; 2 Dm =m, 20,20, n30 (5.10)
2

We will first examine the case when A >0 and p' <0 when series (5.1) is sign-varying
while (5.2) is sign-constant. Taking into account that

Lt n—] L3
S n=3 25+
k=p k=0 kmmn

and also inequalities (5.9) and (5.10), we find from (5.1) and (5.2), respectively

2n—1

n
1 ' .
_2_12n<2u—2 1k<—..fz_z,"_l, —ow ka (5.11)
0 [}

Therefore, utilization of the first expansion from (2.14) results in bilateral limits,
and of the second in just the lower limit for the energy u’. We will have in the zeroth,
first and second approximations from (5.11)

Yelo << 2u" << 1y, —2u’ < m, (5.12)
ht+h<u<ly+ Y l, —2u <my+m,
b+bh+Vd, <2 <ly4+ L+ 1, =28 <mg+m + m,

Now,let A'<<0 and u’>0. 1In this case, series (5.1) will be sign-~constant, and

(5.2) sign-varying. Utilizing inequalities (5.9) and (5.10), we obtain from (5.1) and (5.2)

2n—1

n
e V7 1 90"
2u<2,lm —2—mzn<—2u—2mk<—--§—mm-: (5.13)
o [}]

It hence follows that the first expansion from (2.14) results only in the upper limit,
and the second results in the bilateral limits for the energy u’. In the zeroth, first and
second approximations we find from (5.13)
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2u’ << Uy, Vgmy < —2u" < m, (5.14)
2u' <Ly + 1y, my + my < —2u < my + gm,
2u' <o 4 I+ Ly, mg + my + ymy < —2u" < my + my 4 my
It is seen from (5.11)—(5.14) that we have bilaterial limits for the energy u' in any
case. To obtain them it is necessary here to use the first expansion from (2.14) if A >0
and the second if p’ > 0.
If the selection of the parameters A, and pu, is not constrained by the requirement of
sign-definiteness of A"and u’', we will have the following boundaries instead of (5.11) and
(5.13)

n—1

2n—1
§ 1 , -
- mk+—‘2 Magn_y < 20" < E l.\-—%len—l (5.15)
0 v

constructed on the basis of inequalities (5.7) which hold in general.

6. 1Inequalities analogous to (3.10) can be set up in the problem of estimating the error
due to replacing the solution of problem (l.l) by the solution y, of the problem obtained from
(1.1) by replacing L by L./8/. Assuming the operators L and L, to be positive definite and
"semi-convergent" the following inequalities /7, 8/ turn out to be valid

alult<[uf<Biuld fult=(u Lu), [ul?=(u, Lu) 6.1)

where the fields wu, u, satisfy homogeneous boundary conditions. The quantities « and p are
found from the solution of the generalized eigennumber problem for the operator L of the form
Lu— xLou=0, and respectively equal to a = infx’, § = sup»x”, where x’ is the minimum and »” the
maximum of the eigennumbers /7/. No constraints have here been imposed on o and p and, there-
fore, on L and L, .

Unlike (6.1), inequalities (3.10) take account of the fact that the first series in (2.14),
in which the operator Q is constructed using L., converges. Consequently, « and g cannot be
arbitrary but must satisfy certain constraints. In particular, the following inequalities
result from (3.10):

0<t~k<aSPST+E<C2, k=k (6.2)

The possibility should also be pointed out of another approach to the solution of problem
(1.1), namely, the application of an iteration method directly to analyze the displacement
field u. However, taking account of the boundary conditions in the form (1.2) complicates
the construction considerably. In the special case of the first boundary value problem (the
Dirichlet problem), the solution for the field u can be represented in the form

u=uc+ML’n, L’=L——Lc (6.3)

where M is the operator whose kernel is Green's tensor G. Equation (6.3) is similar in form
to (1.13) and (2.9) as they are all inhomogeneous integral equations of the second kind.
Solving it by iterations, we can write in the same was as for (1.15) and (2.14)
u= 3 (ML u, (6.4)
k=0

Series (6.4) converges provided that | ML | <k <1, which can be written in the form
I ML <SIMIL <k <1 (6.5)

Inequalities similar to (6.5) were utilized in /B8/ to find the stability criterion for
the approximate solution of equations of type (l1.1). The convergence conditions (6.5) for
the series (6.4) cannot, however be converted to the form (3.7), and even more (3.8). To
obtain inequalities of the type (6.5) but containing the pliabilities p and . , it is
necessary to go from the equilibrium equation (1.1) to the incompatibility equation /1, 2/.
The reasoning presented agrees with the remark made by S.G. Mikhlin /7/ about the passage
from constant coefficients A in (l1.1) to variable coefficients. It is indicated that such
an approach produces serious difficulties in the utilization of such methods as the method of
integral equations or the method of Green's function, especially when seeking elementary
particular solutions.

A method is proposed in a published paper for solving a fairly broad class of linear

boundary value problems in the form (l1.1) and (1.2). It is based on the above-mentioned
methods of Green's function and integral equations. Some of the difficulties originating
here are overcome by introducing the projection operators P and @ . Utilization of an auxil-

iary medium enables a solution to be found to such problems, which cannot be solved (or their
solution is quite difficult) by direct methods. This holds particularly in the case of in-

homogeneocus and anisotropic media.
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ON A PERIODIC MIXED PROBLEM FOR A STRIP”

N.I. MIRONENKO

The periodic problem of the action of rigid stamps on a strip is considered.
The foundations of the stamps are assumed to be arbitrarily convex and
symmetric about their vertical axes. The problem is reduced to dual
summation equations by a traditional method. Two cases are studied:
the corners of the stamp press on the strip (the width of the contact area
is known), and the corners of the stamp do not reach the strip (the
width of the contact area is unknown). The solution for stamps with flat
bases follows as a special case from the solution obtained. This is
simultaneocusly the solution (apart from sign and notation) of a certain
doubly~-periodic problem for a plane with slits.
The problem under consideration has been studied by other methods in
/1=3/.
1. The domain of the strip to be studied lies in the complex z ==z 4 iy plane (see Fig.
1 on which the base of the stamps is shown flat for simplicity). The stamps acting on a strip
from both sides have identical width and are arranged symmetrically with period 2b. Therefore,
the problem is periodic, and, consequently, we refer all reasoning to the fundamental period
bz
We will write the boundary conditions forthe upper boundary y = a

ve=—f (@), ]z|<c (1.1)
¥ Y,=0,e<]z|<<D
X, =0, |z|<?
2b
a] © q The form of the function f(z) will be indicated below. We
# e " %z denote the pressure under the stamps by Y,,(f) then the load
t:?%g Y,s () on the faces of the strip can be represented as follows:
| 7
Y@ lzl<e
Fig.1 Yyu(z)= i Xya(n) =0, |z|<b (1.2)
) 0, e<jzI<<h
We expand the periodic load Yy (%) in a Fourier series
00
Yva(z)-——Za,.cosx,.z. x,=-":— (1.3)

=0
b

b
Go= "117 S Yya(z)dz, o= % S Yo (z) cosxyriz
° °

We now rewrite the boundary conditions (1.1) by using the Kolosov-Muskhelishvili potent-
ials
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